
1

Central Connecticut State University
Department of Manufacturing and Construction Management
Robotics and Mechatronics Engineering Program

ROBO 497 – Capstone Senior Project

PREPARED IN PARTIAL FULFILLMENT OF THE

REQUIREMENT FOR THE DEGREE OF

BACHELOR OF SCIENCE

IN

ROBOTICS AND MECHATRONICS ENGINEERING TECHNOLOGY

3D-Printing with Fanuc Robot Arm

Final Report

Pedro Urbina

Advisor(s): Professor Ravindra Thamma, Ph.D.

August 18th, 2019

This report is written in partial fulfillment of the requirements in ROBO 497 –

Capstone Senior Project. The contents represent the opinion of the authors and not

the Department of Manufacturing and Construction Management.

2

Abstract

In this project, a Fanuc LR Mate 200iD 7L robot arm was equipped and programmed to

function as a 3D printer. It was developed by integrating the robot arm system with a generic
3D printer extrusion assembly, which acted as the robot’s end effector, and an Arduino Uno
microcontroller. The extrusion assembly, or print head, included a stepper motor, hot end,
nozzle, cooling fan, and feeder. The hot end and stepper motor, as well as a heated build plate,
were controlled by the microcontroller. Mounting hardware was designed in Siemens NX12 and
3D-printed with the lab’s 3D printer.

Producing a part starts by obtaining a 3D model in STL format. The file is passed through

multiple file conversion programs until it is in Fanuc’s TP format. It is then downloaded to the
robot controller so it can be executed. Due to the robot controller’s low available memory, only
very small parts could be printed. Given more memory, a setup like this could potentially
produce much bigger parts than a common gantry-style 3D printer, thanks to the robot arm’s
large work envelope. The stepper motor system used in this project was unable to
simultaneously operate at low speed and high resolution. As a result, the print head either
extruded material too quickly or slowly but inconsistently. In the end, the system was able to
produce small, simple parts that resembled the desired geometry. With some minor equipment
upgrades and improved code, the system should be able to produce acceptable parts.

Figure 1

Full View of Prototype

3

Table of Contents

Contents
Table of Contents .. 3

Tables and Figures .. 4

Acknowledgment .. 5

I. Problem Definition .. 6

II. Engineering Process .. 7

III. Design Constraints .. 19

IV. Costs .. 20

V. Project Deliverables .. 21

VI. Conclusion/Summary .. 22

VII. Future Work .. 22

VIII. Bibliography .. 23

IX. Code .. 24

4

Tables and Figures

Figure 1 Full View of Prototype 2

Figure 2 Fanuc LR Mate 200iD 7L 7

Figure 3 MK8 Extruder Hot End Kit 8

Figure 4 12V 200W Heated Aluminum Build Plate (220mm X 220mm) 9

Figure 5 Arduino Uno Microcontroller 10

Figure 6 12V 30A DC Universal Regulated Switching Power Supply 11

Figure 7 Current Requirements of Major Components 11

Figure 8 L298N Stepper Drive Board 12

Figure 9 PLA Filament Spool 13

Figure 10 Print Head Mounting Bracket 13

Figure 11 Mounted Print Head 15

Figure 12 Filament Spool Holder 15

Figure 13 Mounted Filament Spool 16

Figure 14 Bill of Materials 20

Figure 15 Produced Part: Cone 21

5

Acknowledgment

Thanks to my advisor, Ravindra Thamma, Ph.D., for going above and beyond to provide
access to the supplies and resources I needed and for coming in at odd hours to get me as much
time in the lab as I needed.

6

I. Problem Definition

3D printing, a type of additive manufacturing, has sharply increased in popularity over
the past several years as a method for rapid prototyping and final production of custom parts,
tooling, and fixtures. By far, the most common type of 3D printer used today features a print
head mounted on an X-Y gantry which deposits material on a build plate that moves in Z to
build the part layer by layer. One drawback of this system is that the size of the part is limited
by the size of the 3D printer’s enclosure. If the part to be built is larger than what the 3D printer
can accommodate, the part will have to be built in pieces then assembled, or the 3D printer will
need to be replaced with a bigger one. Although the cost to buy a 3D printer has reduced
significantly in recent years, it remains a significant investment; and if large parts need to be
built, a significant investment in floor space will also be required.

Robot arms are a commonplace in manufacturing plants and are valued for their
versatility, accuracy, and repeatability in performing repetitive tasks. Additionally, and quite
relevant to the application in question, they have a large work envelope and small footprint by
design. Is it possible and practical to equip and program a robot arm to function as a 3D printer
for producing large parts? This project seeks to answer that question.

7

II. Engineering Process

The goal is to design and integrate tooling and electronics to a robot arm to 3D-print
large parts. The system should be able to produce parts from an STL file from any typical CAD
program, just like a typical 3D printer.

The general idea is to mount a material extruder to the end of the robot arm and to
program the robot to move along the entire volume of the desired part while material is
extruded. In an ideal process, the systems controlling the extruder and robot’s movements will
communicate so that the right amount of material is extruded to match the speed of the robot
and, therefore, produce a detailed part.

2.1 Robot Arm Selection

Figure 2

Fanuc LR Mate 200iD 7L

Certainly, the most important component of the system is also the basis of the project,
the robot arm. Fortunately, several different models of Fanuc 6-axis robot arms are available in
the CCSU engineering lab. All the robots operate with the same software, so the only
configuration to choose was the size of the robot, which defines the range and load that it can
handle. The choice was narrowed down to two models, the LR Mate 200iD 4S and the LR Mate
200iD 7L. The 4S model has a reach of 550mm and load capacity of 4kg, while the 7L has a
reach of 911mm and load capacity of 7kg. The 7L was chosen simply for its extended reach and
load capacity. This would allow more workspace to experiment with the design of the other
components and reduce the risk of compromising accuracy when mounting a potentially heavy
end effector.

8

2.2 Extruder Assembly Selection

Figure 3

MK8 Extruder Hot End Kit

The material extruder, or print head, is the second most important component of the
system. Material extrusion will require four main components: spool, motor, feeder, hot end,
and nozzle. The spool carries the material, which comes in filament form, and rotates freely as
filament is pulled into the extruder. The motor pulls the filament with enough force to push it
through the extruder, rotate the spool, and at a consistent speed to provide an appropriate
flow rate of material. The feeder pins the filament against the motor shaft and guides it into the
hot end and nozzle. As the filament passes through the hot end, it is quickly heated and melted.
Finally, the melted material is pushed through the nozzle, concentrating it into a thin layer so it
can produce fine details in the part to be made.

The entire assembly, except for the spool, will need to be mounted at the end of the
robot arm, in such a way that the nozzle can easily reach the build surface. One option is to
design and build a custom extruder assembly to best fit the robot’s mounting plate; however,
several compact extruder assemblies are available on the market at low cost. The MK8 Extruder
Hot End Kit (shown below) includes a NEMA 17 stepper motor, feeder, hot end, multiple
nozzles with varying diameters, thermistor to monitor hot end temperature, and a cooling fan.
It is compatible with PLA, one of the most commonly used 3D printing materials.

9

2.3 Build Surface Selection

Figure 4

12V 200W Heated Aluminum Build Plate (220mm X 220mm)

Another very important component necessary for 3D printing is the build surface. At a
minimum, the build surface should be flat, smooth, and easy for the build material to adhere
to. A more effective build plate is also heated. This helps the first few layers, the most
important in any print, to lay as flat as possible on the build surface. For the application desired
in this project, the build surface should be as large as possible; but for the purpose of
prototyping, a small (200mm x 200mm), heated aluminum build plate was selected. It includes
a thermistor to monitor and control the temperature. A glass plate was placed on top of the
aluminum plate, as it would be easier to remove the produced part.

After running a few test prints on the glass surface, it was discovered that the PLA was

not adhering consistently. It was replaced with a “heat bed platform sticker sheet”. This is a
textured plastic sheet that self-adheres to the aluminum plate. It resulted in much better
adhesion of the PLA onto the build surface.

10

2.4 Logic Controller Selection

Figure 5

Arduino Uno Microcontroller

A microcontroller is necessary to give instructions to the extruder’s stepper motor, hot
end, and the heating element of the build plate. The robot arm is equipped with its own
controller, but it runs on Fanuc’s proprietary Teach Pendant programming language. It is
optimized for programming the robot’s motions and inputs and outputs for accessories;
however, it doesn’t contain libraries and commands to control something like a stepper motor
easily. Any typical microcontroller will be enough to control these accessories. The Arduino Uno
microcontroller was selected for its simple user interface and vast availability of libraries and
open-source code for the functions needed in this project.

 The Arduino Uno board features an ATmega328P processor with a clock speed of 16
MHz, 32 KB of flash memory, 15 digital input/output pins, and 6 analog input pins. It can
execute up to 20 million instructions per second.

11

2.5 Power Supply Selection

Figure 6

12V 30A DC Universal Regulated Switching Power Supply

The heating elements and the extruder’s stepper motor require much more power than
the 20 mA that can be supplied by the microcontroller. All the components to be powered
require 12V DC. To select an appropriate supply, the current requirement at maximum load of
each component was simply summed. Referring to each component’s respective
manufacturer’s specifications, the current requirements are as follows:

Component Maximum Current Requirement (Amps)

Extruder Stepper Motor 3.0

Extruder Hot End 3.3

Build Plate 16.7

Total 23.0

Figure 7
Current Requirements of Major Components

The power supply purchased provides up to 30 amps of DC at 12V and has multiple

screw terminals to easily connect multiple components. It did not include a power cable or a
standardized connector for a power cable, so an AC power cable designed for a desktop
computer was stripped, fitted with ferrules, and connected to the screw terminals on the
power supply.

12

2.6 Stepper Motor Controller

Figure 8

L298N Stepper Drive Board

Stepper motors function by rotating in discrete angular increments called steps. To
achieve each step, the coils in the motor are energized at different times and polarities.
Therefore, the stepper motor will not work by simply connecting it directly to DC source. A
stepper driver, like the one shown above, connects to the DC source and “chops” the current
among the four outputs based on the logic sequence received from the microcontroller.

13

2.7 Build Material Selection

Figure 9

PLA Filament Spool

The print head being used for this project can reach temperatures high enough to be
compatible with any type of 3D printing material. Polylactic Acid (PLA) was selected for this
project for its ease of use, biodegradability, and low cost.

2.8 Print Head Mounting Bracket Design

Figure 10

Print Head Mounting Bracket

14

 Because the printhead being used was designed for a specific 3D printer, it naturally did
not come with any mounting hardware that could be used to secure it to the robot; nor was
there such a product available off-the-shelf. It was decided to design and build mounting
hardware in the engineering lab.

 The first consideration was the material and manufacturing process to use. The most
convenient option would be to 3D print the parts needed here in the lab; but there was concern
that the extruder assembly would generate too much heat during use and melt the plastic.
After testing the stepper motor at length, however, it was discovered that it only became warm
to the touch. Acrylonitrile Butadiene Styrene (ABS), the material used in the lab’s 3D printer,
starts becoming malleable above 105° C – much higher than the temperatures the stepper
motor is expected to reach. It was decided to 3D print the mounting bracket.

 The print head should be mounted so that the nozzle is oriented in the same direction
as the end of the robot to reduce complexity when programming the robot’s movements. Also,
the filament entry point and connector ports on the extruder assembly should be unobstructed
by the robot’s links. The print head was reassembled so that all the electrical connections could
be run on one side of the robot and so the filament could be fed in from above.

 The bracket was designed with a slot for the stepper motor to be inserted. The
geometry of the stepper motor prevents it from being pushed too far into the slot. Then, the
rest of the extruder is assembled onto the end of the motor. The geometry of the extruder
hardware prevents the whole assembly from sliding back through the slot. The slot itself was
designed with a tight tolerance to prevent the motor from moving around. Counter-bored holes
are included to mount the bracket to the robot’s faceplate. Holes were added wherever
possible for heat dissipation.

 The resulting fixture holds the print head rigidly in the desired orientation and provides
proper clearance for connections and filament. The only issue is the stepper motor slot is too
tight, meaning that the motor had to be forced in. Disassembly may require an amount of force
that could damage the motor or the bracket.

15

Figure 11

Mounted Print Head

2.9 Filament Spool Holder Design

Figure 12

Filament Spool Holder

 The filament spool needs to be mounted in a way that the filament can easily be fed into
the extruder. It should also give as little resistance as possible, so the stepper motor does not
struggle to pull the filament in and to not disrupt the flow of material to the print.

 The desire was to mount the spool as close to the extruder as possible. The link between
joints four and five on the robot has enough space for the spool and is close to the end of the

16

robot, so that was the best place to mount the spool. A mounting bracket for this application
was not available off-the-shelf, so it was designed. To simplify the process and save time, this
bracket would be 3D printed as well.

The bracket was designed to conform to the shape of the robot arm and with holes to
tie it down with zip ties. The axle was designed to fit with a bearing that was available in the
lab. The spool is simply placed onto the axle and a pin is placed at the end of the axle to prevent
the spool from falling off during operation.

The result allows the spool with spin freely and the bracket is secured firmly onto the

robot. The pin, however, was too thin and quickly broke when handled. Two metal screws are
inserted into the pin-slot instead.

Figure 13

Mounted Filament Spool

2.10 Programming Robot Movements

One of the criteria for this project is to be able to produce parts from CAD models. The
robot will need to be programmed to move through the entire geometry of the desired part
precisely and quickly. The robot being used does not come with a feature in its software to
command the robot to move through the entire volume of a part. Furthermore, to produce
even a small part, the robot will need to execute hundreds or thousands of motions, so
manually programming is completely impractical. A third-party solution is needed.

 In a typical 3D printing process, the CAD model is saved into an STL file, then converted
to a G-Code file by the 3D printer’s software. G-Code essentially “slices” the 3D model into
many thin 2D layers and gives the 3D printer the motion instructions for each layer. This type of

17

programming would be a good place to start for this project; however, the robot controller
cannot read G-Code directly. Fortunately, a Java program to convert G-Code to Fanuc’s Teach
Pendant code already existed and was available for free. There are also many free programs
available to convert STL to G-Code. The process to get the desired TP code for the robot worked
as follows:

1. Obtain a 3D model and save it as an STL file using any standard CAD software.
2. Use any preferred “slicing” software to convert the STL file to G-Code.
3. Type the G-Code filename into the appropriate line in the G-Code-to-TP conversion Java

program.
4. Compile the Java program in Windows command prompt or any Java compiler.
5. Run the Java program. A LS file is produced.
6. Upload the LS file into Fanuc’s ROBOGUIDE software and build it as a TP file.
7. Download the TP file to a flash drive, then to the robot controller.
8. Run the program on the robot.

2.11 Programming Extruder Stepper Motor

 The extruder’s stepper motor was to be controlled by the Arduino microcontroller. The
Arduino software makes it simple to program a stepper motor. It includes a command library
that allows the programmer to write simple instructions to tell the motor the direction, speed,
and number of steps to move. Nonetheless, there are two major issues with the stepper motor
design.

 The first major issue is regarding how to tell the stepper motor when to run and when
to stop, as well as how fast to run. In a typical 3D printing system, the G-Code program provides
these instructions. In this system, however, the G-Code instructions are being loaded to the
robot controller and there isn’t a simple method to pass the instructions from the robot
controller to the Arduino. There was not enough time to program this functionality, so the
Arduino was programmed to have the stepper motor start when a button is pressed and then
run at a constant speed. When the user is ready to print, he or she will press this button as soon
as they start the robot’s TP program. The obvious consequence is that either too much or too
little material is extruded at different stages throughout the print.

 The second major issue concerns the speed of the motor. To optimize the process
outlined above, the motor needs to run at a constant speed and the speed should be low to not
extrude too much material during the print. The stepper driver used provides a minimum step
angle of 1.8°. To reduce the speed, the program can simply create a delay between each step.
The delay necessary to prevent too much material from being extruded with this equipment is
around one second. This means that material flow is “jerky”, resulting in uneven features in the
printed part. The solution would be to use a higher-resolution stepper driver with smaller step
angles. The motor could then be programmed with lower delays between steps and still achieve

18

the low speed needed. Another solution would be to use gears to reduce the output speed, but
this would mean redesigning the extruder assembly.

2.12 Programming Heating Elements

 To control the current going to the heating elements, a set of digital relays are used. The
main circuit to the heating element is normally open. When a digital output from the
microcontroller goes high, the main circuit is closed and current to the heating element heats it
up. Both heating elements came with thermistors to monitor the temperature. A voltage
divider circuit allows the microcontroller to measure the change in resistance in the thermistor.
The relationship between resistance and temperature for the 100K NTC type thermistors used
in both heating elements are available in tables on the internet. The microcontroller program
handles the calculations to interpret resistance as temperature.

 The method used to regulate temperature is hysteresis. The microcontroller simply
turns off the relay when temperature gets too high and turns on the relay when temperature
gets too low. To accommodate for overshoot, the maximum and minimum temperatures in the
program are set well before the actual desired minimum and maximum temperatures. PID
control is available in the Arduino libraries, which would result in steadier and more predictable
temperatures, but would take significantly more time to set up. Hysteresis was good enough for
the prototype.

19

III. Design Constraints

The goal is to design a 3D-printing process that can build very large or long parts while
maintaining a relatively small footprint when not in use. It should be possible to produce parts
from a CAD model, just like with a typical 3D printer.

The project will have a modest budget and preferably make use of the equipment and
materials already available in the engineering lab.

The timeline is to begin work in mid-May 2019 and to have a working prototype in two
months.

20

IV. Costs

Part # Part Name Description Qty Units Unit Cost Cost

1 MK8 Extruder Hot
End Kit

Stepper motor, extruder, hot end,
4 nozzles, 1.75mm PLA compatible

2 assy. $26.98 $53.96

2 3D Printer PLA
Filament

PLA, 1.75mm, 2.2lbs, blue 3 spool $16.99 $50.97

3 3D Printer PLA
Filament

PLA, 1.75mm, 2.2lbs, white, glow
in the dark

3 spool $17.99 $53.97

4 3D Printer PLA
Filament

PLA, 1.75mm, 2.2lbs, silver 3 spool $15.99 $47.97

5 Power Supply 12V, 30A, universal regulated
switching power supply

1 unit $18.95 $18.95

6 Arduino Uno Micro-controller for extruder 1 unit $20.69 $20.69

7 L298N Motor
Controller

Stepper motor drive controller
board

1 unit $7.01 $7.01

8 MK8 Extruder
Nozzles

Extra nozzles 1 10-pk $8.99 $8.99

9 Nozzle Cleaning
Kit

33-piece kit 2 kit $10.99 $21.98

10 Heat Bed and
Build Plate

220mmx220mm, 12V, 200W,
aluminum

1 kit $44.99 $44.99

11 Heat Bed Platform
Sticker Sheet

200mmx200mm 2 4-pk $25.99 $51.98

 Total 20 $381.46

Figure 14: Bill of Materials

https://www.amazon.com/Extruder-Extruders-MakerBot-Filament-Supported/dp/B07C3ZVZ41/ref=pd_sbs_147_10?_encoding=UTF8&pd_rd_i=B07C3ZVZ41&pd_rd_r=bda36b69-393e-11e9-a50d-573433851930&pd_rd_w=GSkT1&pd_rd_wg=Bwt19&pf_rd_p=588939de-d3f8-42f1-a3d8-d556eae5797d&
https://www.amazon.com/Extruder-Extruders-MakerBot-Filament-Supported/dp/B07C3ZVZ41/ref=pd_sbs_147_10?_encoding=UTF8&pd_rd_i=B07C3ZVZ41&pd_rd_r=bda36b69-393e-11e9-a50d-573433851930&pd_rd_w=GSkT1&pd_rd_wg=Bwt19&pf_rd_p=588939de-d3f8-42f1-a3d8-d556eae5797d&
https://www.amazon.com/3D-Solutech-Filament-Dimensional-Accuracy/dp/B00ME7A1II/ref=sr_1_3?ie=UTF8&qid=1551129207&sr=8-3&keywords=1.75+mm+filament+blue
https://www.amazon.com/3D-Solutech-Filament-Dimensional-Accuracy/dp/B00ME7A1II/ref=sr_1_3?ie=UTF8&qid=1551129207&sr=8-3&keywords=1.75+mm+filament+blue
https://www.amazon.com/dp/B00ME7NHJ8/ref=sspa_dk_detail_1?psc=1&pd_rd_i=B00ME7NHJ8&pd_rd_w=KlGwa&pf_rd_p=733540df-430d-45cd-9525-21bc15b0e6cc&pd_rd_wg=mKm1u&pf_rd_r=PB3YR290DW1A5206DEQC&pd_rd_r=d1acdb25-46b2-11e9-a09e-af4805a7e305
https://www.amazon.com/dp/B00ME7NHJ8/ref=sspa_dk_detail_1?psc=1&pd_rd_i=B00ME7NHJ8&pd_rd_w=KlGwa&pf_rd_p=733540df-430d-45cd-9525-21bc15b0e6cc&pd_rd_wg=mKm1u&pf_rd_r=PB3YR290DW1A5206DEQC&pd_rd_r=d1acdb25-46b2-11e9-a09e-af4805a7e305
https://www.amazon.com/3D-Solutech-Filament-Dimensional-Accuracy/dp/B00ME7YUIU/ref=pd_cp_328_1?pd_rd_w=CJYSX&pf_rd_p=ef4dc990-a9ca-4945-ae0b-f8d549198ed6&pf_rd_r=4PHE9M9CMT34SBRSGFH9&pd_rd_r=8420054b-46b0-11e9-a980-bdee03e8959c&pd_rd_wg=yArSs&pd_rd_i=B00ME7YUIU&psc=1&refRID=4PHE9M9CMT34SBRSGFH9
https://www.amazon.com/3D-Solutech-Filament-Dimensional-Accuracy/dp/B00ME7YUIU/ref=pd_cp_328_1?pd_rd_w=CJYSX&pf_rd_p=ef4dc990-a9ca-4945-ae0b-f8d549198ed6&pf_rd_r=4PHE9M9CMT34SBRSGFH9&pd_rd_r=8420054b-46b0-11e9-a980-bdee03e8959c&pd_rd_wg=yArSs&pd_rd_i=B00ME7YUIU&psc=1&refRID=4PHE9M9CMT34SBRSGFH9
https://www.amazon.com/eTopxizu-Universal-Regulated-Switching-Computer/dp/B00D7CWSCG/ref=pd_bxgy_328_img_3/132-2780204-2118729?_encoding=UTF8&pd_rd_i=B00D7CWSCG&pd_rd_r=a28d1e90-3a07-11e9-b485-5ba568500836&pd_rd_w=Bj3iI&pd_rd_wg=wVCyl&pf_rd_p=6725dbd6-991
https://www.amazon.com/Arduino-A000066-ARDUINO-UNO-R3/dp/B008GRTSV6/ref=sr_1_3?ie=UTF8&qid=1551215540&sr=8-3&keywords=arduino+uno+genuine
https://www.amazon.com/H-bridge-Controller-DROK-Regulator-Duemilanove/dp/B07MR2S1YX/ref=sr_1_1?ie=UTF8&qid=1551215753&sr=8-1&keywords=drok+l298n
https://www.amazon.com/H-bridge-Controller-DROK-Regulator-Duemilanove/dp/B07MR2S1YX/ref=sr_1_1?ie=UTF8&qid=1551215753&sr=8-1&keywords=drok+l298n
https://www.amazon.com/CCTREE-Extruder-Makerbot-Different-0-4mm-0-6mm-0-8mm/dp/B075487F63/ref=sr_1_4?ie=UTF8&qid=1551215878&sr=8-4&keywords=3d+printer+nozzle
https://www.amazon.com/CCTREE-Extruder-Makerbot-Different-0-4mm-0-6mm-0-8mm/dp/B075487F63/ref=sr_1_4?ie=UTF8&qid=1551215878&sr=8-4&keywords=3d+printer+nozzle
https://www.amazon.com/Printer-Cleaning-including-Cleaner-Needles/dp/B07G493V8M/ref=sr_1_6?ie=UTF8&qid=1551216196&sr=8-6&keywords=3d+printer+nozzle+cleaning+kit+0.2mm
https://www.amazon.com/Printer-Cleaning-including-Cleaner-Needles/dp/B07G493V8M/ref=sr_1_6?ie=UTF8&qid=1551216196&sr=8-6&keywords=3d+printer+nozzle+cleaning+kit+0.2mm
https://www.amazon.com/dp/B07CBC968Y/ref=sspa_dk_detail_4?psc=1&pd_rd_i=B07CBC968Y&pd_rd_w=7PA96&pf_rd_p=733540df-430d-45cd-9525-21bc15b0e6cc&pd_rd_wg=kJzX7&pf_rd_r=6RCS24RDBSK6MXG4MZDG&pd_rd_r=bf8dcf03-46b4-11e9-8c57-f5289a200bc0#customerReviews
https://www.amazon.com/dp/B07CBC968Y/ref=sspa_dk_detail_4?psc=1&pd_rd_i=B07CBC968Y&pd_rd_w=7PA96&pf_rd_p=733540df-430d-45cd-9525-21bc15b0e6cc&pd_rd_wg=kJzX7&pf_rd_r=6RCS24RDBSK6MXG4MZDG&pd_rd_r=bf8dcf03-46b4-11e9-8c57-f5289a200bc0#customerReviews
https://www.amazon.com/Printing-Surface-Printer-Platform-Sticker/dp/B07MMVR9LK/ref=sr_1_3?ie=UTF8&qid=1551218084&sr=8-3&keywords=3d%2Bprinter%2Bbuild%2Bsurface&th=1
https://www.amazon.com/Printing-Surface-Printer-Platform-Sticker/dp/B07MMVR9LK/ref=sr_1_3?ie=UTF8&qid=1551218084&sr=8-3&keywords=3d%2Bprinter%2Bbuild%2Bsurface&th=1

21

V. Project Deliverables

At the time of this writing, a partially functioning prototype is deliverable. In its current
state, a user can perform the following general steps:

1. Load TP program for the desired part to the robot.
2. Press ON button on microcontroller to automatically heat hot end build plate to the

appropriate temperature.
3. When heating elements are ready, start the TP program and press button on

microcontroller to start extrusion.

 Hardware limitations and programming gaps have resulted in a few major faults. The

robot and print head do not provide feedback to each other in the current state; therefore, the
amount of material extruded is usually incorrect. This results in a low-quality finished part.
Another opportunity for improvement is to streamline the process of producing a TP file to load
to the robot. As it stands, the user must manually perform several intermediate steps to
convert the original STL file to the required TP file and the process is time-consuming and
unintuitive.

Figure 15

Produced Part: Cone

22

VI. Conclusion/Summary

As stated earlier in the report, one major limitation of most 3D printers on the market is
build volume, meaning they cannot produce parts with large dimensions. The two main
alternatives are to print the part in pieces and then assemble, or to manufacture it by other
means. Assembling the part can introduce stress points and increase the complexity of the part.
Manufacturing the part by other means can often mean long turnaround times and increased
cost, which is usually detrimental to prototyping.

The objective of this project was to test the concept of 3D printing with a robot arm.

One of the major benefits is that robot arms already have a large work envelope which can
translate to a large build volume, while also maintaining the high accuracy and repeatability
needed for 3D printing. Another benefit is the cost savings from not having to build or purchase
an entire machine if a robot arm is already available in the facility. A user would just need to
attach the required accessories, which can be removed if the robot is needed to perform other
jobs.

To carry out the project at low cost and time consumption, the available resources in

the university’s engineering labs were exploited as much as possible. A rough prototype was
produced using simple and cheap electronics, an easy-to-use Arduino microcontroller, and 3D-
printed mounting assemblies. While the quality of parts produced by the prototype leave much
to be desired, it should be noted that it was all put together in two months by just one senior
undergraduate. With modest additional investment of time and money, the prototype can be
improved to produce parts with comparable quality to that of a professional 3D printer.

VII. Future Work

Future students looking to improve on this project should first focus on implementing
communication between the robot controller and the microcontroller. The microcontroller
should indicate to the robot controller when the heating elements are at operating
temperature so the print can begin automatically. The robot controller should indicate to the
microcontroller when and how much material to extrude.

Another major improvement would be to develop a program to automate the process of

converting a G-Code file to a TP file.

23

VIII. Bibliography

3D Hubs, 2018, “What is 3D Printing? The definitive guide”, https://www.3dhubs.com/guides/3d-

printing/, Jul. 6th, 2019, 3D Hubs

Swanson, Spurgeon, Vass, and Danielewicz, 2016, “3D Printing Robotic Arm”,

https://web.wpi.edu/Pubs/E-project/Available/E-project-032516-

143806/unrestricted/3D_Printing_Robot_Arm_MQP_Report_3-24-25_v2.pdf, April 20th, 2019,

Worcester Polytechnic Institute

Ada, 2012, “Thermistor”, https://learn.adafruit.com/thermistor/overview, June 15th, 2019, Adafruit

Industries

https://www.3dhubs.com/guides/3d-printing/
https://www.3dhubs.com/guides/3d-printing/
https://web.wpi.edu/Pubs/E-project/Available/E-project-032516-143806/unrestricted/3D_Printing_Robot_Arm_MQP_Report_3-24-25_v2.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-032516-143806/unrestricted/3D_Printing_Robot_Arm_MQP_Report_3-24-25_v2.pdf
https://learn.adafruit.com/thermistor/overview

24

IX. Code

9.1 Arduino Code

// ROBO 497 - Capstone Senior Project
// Spring 2019
// Pedro Urbina
// Advisor: Ravindra Thamma, Ph.D.

// EXTRUDER **********
#include <Stepper.h>
const int stepsPerRevolution = 200;
const int enApin = 12;
const int enBpin = 13;
int enAstate = 0;
int enBstate = 0;
// initialize the stepper library:
Stepper myStepper(stepsPerRevolution, 5, 4, 3, 2);
int stepCount = 0; // number of steps the motor has taken
int extrudeStepCount = 10;
float motorSpeed = 20; //rpm
int extrudeDelay = 1000;

const int enableButton = 9; // the number of the pushbutton pin
const int ledPin = 10; // the number of the LED pin
int enableState = LOW; // the current state of the output pin
int enableButtonState; // variable for reading the pushbutton status
int lastEnableButtonState = HIGH; // the previous reading from the input pin
long lastDebounceTime = 0; // the last time the output pin was toggled
long debounceDelay = 200; // the debounce time; increase if the output flickers

const int extrudeButton = 7; // the number of the pushbutton pin
int extrudeButtonState; // variable for reading the pushbutton status
int extrudeState = LOW; // the current state of the output pin
int lastExtrudeButtonState = HIGH; // the previous reading from the input pin

const int retractButton = 8; // the number of the pushbutton pin
int retractButtonState = 0; // variable for reading the pushbutton status

// HOT END **********
// which analog pin to connect
#define HOTEND_THERMISTORPIN A0
// resistance at 25 degrees C
#define HOTEND_THERMISTORNOMINAL 102900
// temp. for nominal resistance (almost always 25 C)
#define HOTEND_TEMPERATURENOMINAL 25

25

// how many samples to take and average, more takes longer
// but is more 'smooth'
#define HOTEND_NUMSAMPLES 5
// The beta coefficient of the thermistor (usually 3000-4000)
#define HOTEND_BCOEFFICIENT 3950
// the value of the 'other' resistor
#define HOTEND_SERIESRESISTOR 99100
int hotend_samples[HOTEND_NUMSAMPLES];

unsigned int hotEndTargetTemp = 260;
unsigned int minHotEndTemp = 200;
unsigned int maxHotEndTemp = 280;
const int hotEndRelayPin = 6;
unsigned int hotEndTemp;

// HEATED BUILD PLATE **********
// which analog pin to connect
#define PLATE_THERMISTORPIN A1
// resistance at 25 degrees C
#define PLATE_THERMISTORNOMINAL 100000
// temp. for nominal resistance (almost always 25 C)
#define PLATE_TEMPERATURENOMINAL 25
// how many samples to take and average, more takes longer
// but is more 'smooth'
#define PLATE_NUMSAMPLES 5
// The beta coefficient of the thermistor (usually 3000-4000)
#define PLATE_BCOEFFICIENT 3950
// the value of the 'other' resistor
#define PLATE_SERIESRESISTOR 100870
int plate_samples[PLATE_NUMSAMPLES];

unsigned int minPlateTemp = 60; //(value of the reading of your thermistor which is the lower bound of
your desired range)
unsigned int maxPlateTemp = 65; //(value of the reading of your thermistor which is the higher bound of
your desired range)
const int plateRelayPin = 11;
unsigned int plateTemp;

void setup() {

 Serial.begin(9600);

 // EXTRUDER **********
 pinMode(enApin,OUTPUT);
 pinMode(enBpin,OUTPUT);
 pinMode(enableButton, INPUT);
 pinMode(extrudeButton, INPUT);
 pinMode(retractButton, INPUT);

26

 pinMode(ledPin, OUTPUT);
 myStepper.setSpeed(motorSpeed);

 // THERMISTOR VOLTAGE REFERENCE **********
 analogReference(EXTERNAL);

 // HOT END **********
 pinMode(hotEndRelayPin,OUTPUT);
 digitalWrite(hotEndRelayPin,HIGH);

 // HEATED BUILD PLATE **********
 pinMode(plateRelayPin,OUTPUT);
 digitalWrite(plateRelayPin,HIGH);
}

void loop() {

 enable();

 if (enableState == HIGH) {
 hotend_thermistorReading();
 if(hotEndTemp > hotEndTargetTemp) {
 hotEndOff();
 }
 else if(hotEndTemp < hotEndTargetTemp) {
 hotEndOn();
 }

 plate_thermistorReading();
 if(plateTemp > maxPlateTemp) {
 plateOff();
 }
 else if(plateTemp < minPlateTemp) {
 plateOn();
 }

 if(hotEndTemp > minHotEndTemp && hotEndTemp < maxHotEndTemp && plateTemp > 55 &&
plateTemp < 70) {
 extrudeButtonFunction();
 retractButtonState = digitalRead(retractButton);
 if(extrudeState == HIGH) {
 extrude();
 delay(extrudeDelay);
 }
 else if(retractButtonState == HIGH) {
 retract();
 }
 }

27

 }
 else {
 hotEndOff();
 plateOff();
 extrudeState = LOW;
 disableMotor();
 }
}

void enableMotor() {
 digitalWrite(enApin,HIGH);
 digitalWrite(enBpin,HIGH);
}

void disableMotor() {
 digitalWrite(enApin,LOW);
 digitalWrite(enBpin,LOW);
}

void hotEndOn () {
 digitalWrite(hotEndRelayPin,LOW);
}

void hotEndOff () {
 digitalWrite(hotEndRelayPin,HIGH);
}

void plateOn () {
 digitalWrite(plateRelayPin,LOW);
}

void plateOff () {
 digitalWrite(plateRelayPin,HIGH);
}

void extrude() {
 enableMotor();
 myStepper.step(-extrudeStepCount);
 disableMotor();
}

void retract() {
 enableMotor();
 myStepper.step(extrudeStepCount);
 disableMotor();
}

void enable() {

28

 int reading = digitalRead(enableButton);
 if (reading == HIGH && lastEnableButtonState == LOW && millis() - lastDebounceTime >
debounceDelay) {
 if (enableState == HIGH)
 enableState = LOW;
 else
 enableState = HIGH;

 lastDebounceTime = millis();
 }
 digitalWrite(ledPin, enableState);
 lastEnableButtonState = reading;
}

void extrudeButtonFunction() {
 int reading = digitalRead(extrudeButton);
 if (reading == HIGH && lastExtrudeButtonState == LOW && millis() - lastDebounceTime >
debounceDelay) {
 if (extrudeState == HIGH)
 extrudeState = LOW;
 else
 extrudeState = HIGH;

 lastDebounceTime = millis();
 }
 lastExtrudeButtonState = reading;
}

void hotend_thermistorReading() {
 uint8_t i;
 float average;

 // take N samples in a row, with a slight delay
 for (i=0; i< HOTEND_NUMSAMPLES; i++) {
 hotend_samples[i] = analogRead(HOTEND_THERMISTORPIN);
 delay(10);
 }

 // average all the samples out
 average = 0;
 for (i=0; i< HOTEND_NUMSAMPLES; i++) {
 average += hotend_samples[i];
 }
 average /= HOTEND_NUMSAMPLES;

 //Serial.print("Average analog reading ");
 //Serial.println(average);

29

 // convert the value to resistance
 average = 1023 / average - 1;
 average = HOTEND_SERIESRESISTOR / average;
 //Serial.print("Thermistor resistance ");
 //Serial.println(average);

 float steinhart;
 steinhart = average / HOTEND_THERMISTORNOMINAL; // (R/Ro)
 steinhart = log(steinhart); // ln(R/Ro)
 steinhart /= HOTEND_BCOEFFICIENT; // 1/B * ln(R/Ro)
 steinhart += 1.0 / (HOTEND_TEMPERATURENOMINAL + 273.15); // + (1/To)
 steinhart = 1.0 / steinhart; // Invert
 steinhart -= 273.15; // convert to C

 hotEndTemp = steinhart;

 Serial.print("Hot End Temperature ");
 Serial.print(hotEndTemp);
 Serial.print(" *C");
}

void plate_thermistorReading() {
 uint8_t i;
 float average;

 // take N samples in a row, with a slight delay
 for (i=0; i< PLATE_NUMSAMPLES; i++) {
 plate_samples[i] = analogRead(PLATE_THERMISTORPIN);
 delay(10);
 }

 // average all the samples out
 average = 0;
 for (i=0; i< PLATE_NUMSAMPLES; i++) {
 average += plate_samples[i];
 }
 average /= PLATE_NUMSAMPLES;

 //Serial.print("Average analog reading ");
 //Serial.println(average);

 // convert the value to resistance
 average = 1023 / average - 1;
 average = PLATE_SERIESRESISTOR / average;
 //Serial.print("Thermistor resistance ");
 //Serial.println(average);

 float steinhart;

30

 steinhart = average / PLATE_THERMISTORNOMINAL; // (R/Ro)
 steinhart = log(steinhart); // ln(R/Ro)
 steinhart /= PLATE_BCOEFFICIENT; // 1/B * ln(R/Ro)
 steinhart += 1.0 / (PLATE_TEMPERATURENOMINAL + 273.15); // + (1/To)
 steinhart = 1.0 / steinhart; // Invert
 steinhart -= 273.15; // convert to C

 plateTemp = steinhart;

 Serial.print("\tPlate Temperature ");
 Serial.print(plateTemp);
 Serial.println(" *C");
}

31

9.2 Java Code (from bibliography entry 2)

Main Program

import java.io.*;
import java.util.ArrayList;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class main{
public static final String programName = "PBig";
public static final String inputFileName = "cube.gcode";
public static Parser parser = new Parser();
/**
* Opens a file containing gCode.
* @param path
* @return
* @throws IOException
*/
public static Object[] OpenFile(String path) throws IOException {
FileReader reader = new FileReader(path);
BufferedReader buffReader = new BufferedReader(reader);
return buffReader.lines().toArray();
}
public static void main(String args[]) {
try {
Object[] fileContents = OpenFile("G-Code Files/" + inputFileName);
int length = fileContents.length;
PrintWriter writer = new PrintWriter(programName + ".ls", "UTF-8");
PrintWriter posWriter = new PrintWriter("posOutput.txt", "UTF-8");
PrintWriter movWriter = new PrintWriter("movOutput.txt", "UTF-8");
//writer.println("1: PR[1] = P[1];");
//writer.println("2: UFRAME[8] = PR[1];");
//writer.println("3: UFRAME_NUM = 8;");
for (int i = 0; i < length; i++) {
//System.out.println(fileContents[i]);
if (i % 500 == 0) {
//Periodically write data to file.
System.out.println("Working on " + (i+1) + " of " + length);
movWriter.print(parser.movements);
posWriter.print(parser.positions);
parser.movements = "";
parser.positions = "";
}
parser.parseLine(fileContents[i].toString());

32

}
movWriter.print(parser.movements);
posWriter.print(parser.positions);
parser.movements = "";
parser.positions = "";
movWriter.close();
posWriter.close();
Object[] movContents = OpenFile("movOutput.txt");
System.out.println("Length: " + movContents.length);
int movLength = movContents.length;
int num = 0;
ArrayList<String> endPos = new ArrayList<String>();
writer.println("/PROG " + programName);
writer.println("/ATTR \n/MN");
for (int i = 0; i < movLength; i++) {
/*if(i % 1000 == 0){
Pattern pointPattern = Pattern.compile("(.*)(P\\[(\\d+)\\])(.*)");
Matcher pointMatcher = pointPattern.matcher((String)
movContents[i]);
if(pointMatcher.matches()){
endPos.add(pointMatcher.group(3));
}
writer = new PrintWriter(programName + num + ".txt", "UTF-8");
55
writer.println("/PROG " + programName + num);
writer.println("/ATTR \n/MN");
num++;
}*/
//Write motion instructions to file.
synchronized (fileContents) {
writer.println((String) movContents[i]);
}
}
writer.println("/POS");
//Set up the robot frame this program will use.
writer.println("P[1]{ \n" +
" GP1:\n" +
" UF:F, UT:F,\n" +
" CONFIG: 'N U T, , 0, 0',\n" +
" X = -900.0mm, Y = 0.0mm, Z = 0.0mm, W = -180.000 deg, P = 0.000 deg, R = 0.000 deg \n" + "
};");
Object[] posContents = OpenFile("posOutput.txt");
int posLength = posContents.length;
num = 0;

33

for (int i = 0; i < posLength; i++) {
/*if(!endPos.isEmpty()) {
if (i % Integer.parseInt(endPos.get(0)) == 0) {
//writer = new PrintWriter(new FileOutputStream(new
File(programName + num + ".txt"), true /* append = true *///));
//Write the position data to file.
//synchronized (fileContents) {
writer.println((String) posContents[i]);
//}
//endPos.remove(0);
//}
//}
}
writer.println("/END.");
posWriter.close();
movWriter.close();
writer.close();
FileSplitter splitter = new FileSplitter(programName, movContents,
posContents);
splitter.split();
}catch (IOException error){
System.out.println("Could not open file. " + error);
}
}
}

Parser Program

import java.util.regex.Matcher;
import java.util.regex.Pattern;
/**
* Created by Will on 10/29/15.
*/
public class Parser {
boolean extruderOn = false;
int lineNumber = 1; //Starting line of motion instructions.
Pattern g1Patten = Pattern.compile("(G0 |G1)(.*)");
Pattern g2Pattern = Pattern.compile("(G2)(.*)");
Pattern g3Pattern = Pattern.compile("(G3)(.*)");
Pattern xPattern = Pattern.compile("(.*)X(-?)\\d+(\\.?)\\d*(.*)");
Pattern yPattern = Pattern.compile("(.*)Y(-?)\\d+(\\.?)\\d*(.*)");
Pattern zPattern = Pattern.compile("(.*)Z(-?)\\d+(\\.?)\\d*(.*)");
Pattern ePattern = Pattern.compile("(.*)E(-?)\\d+(\\.?)\\d*(.*)");
Pattern fPattern = Pattern.compile("(.*)F(-?)\\d+(\\.?)\\d*(.*)");

34

Pattern iPattern = Pattern.compile("(.*)I(-?)\\d+(\\.?)\\d*(.*)");
Pattern jPattern = Pattern.compile("(.*)J(-?)\\d+(\\.?)\\d*(.*)");
public static float lastXPos = 0;
public static float lastYPos = 0;
public static float lastZPos = 0;
public static int lastFeedrate = 0;
public static float lastExtruderValue = 0;
public static int pointCount = 2; //Point 1 sets the robot frame.
public static int iterations = 0;
public static int inRange = 0;
float lastTestX = 0;
float lastTestY = 0;
public static String movements = "";
public static String positions = "";
/**
* Determines if the input is a linear or arc motion. Ignores all other commands.
* @param input
*/
public void parseLine(String input){
Matcher g1Matcher = g1Patten.matcher(input);
Matcher g2Matcher = g2Pattern.matcher(input);
Matcher g3Matcher = g3Pattern.matcher(input);
if(g1Matcher.matches()){
G1Parser(input);
}else if (g2Matcher.matches()){
arcParser(input, true);
}else if(g3Matcher.matches()){
arcParser(input, false);
}
}
/**
* Parse linear movement instruction.
* @param input
*/
public void G1Parser(String input){
float xPos = 0;
float yPos = 0;
float zPos = 0;
float extruderVal = 0;
int feedrate = 0;
Matcher xMatcher = xPattern.matcher(input);
Matcher yMatcher = yPattern.matcher(input);
Matcher zMatcher = zPattern.matcher(input);
Matcher eMatcher = ePattern.matcher(input);

35

Matcher fMatcher = fPattern.matcher(input);
if(xMatcher.matches()){
int start = xMatcher.end(1)+1;
int end = xMatcher.start(4);
//System.out.println("Substring: " + input.substring(start, end));
xPos = Float.parseFloat(input.substring(start, end));
lastXPos = xPos;
}else{
xPos = lastXPos;
}
if(yMatcher.matches()){
int start = yMatcher.end(1)+1;
int end = yMatcher.start(4);
yPos = Float.parseFloat(input.substring(start, end));
lastYPos = yPos;
}else{
yPos = lastYPos;
}
if(zMatcher.matches()){
int start = zMatcher.end(1)+1;
int end = zMatcher.start(4);
zPos = Float.parseFloat(input.substring(start, end));
lastZPos = zPos;
}else{
zPos = lastZPos;
}
if(eMatcher.matches()){
int start = eMatcher.end(1)+1;
int end = eMatcher.start(3);
extruderVal = Float.parseFloat(input.substring(start, end));
lastExtruderValue = extruderVal;
}else{
extruderVal = 0;
}
if(fMatcher.matches()){
int start = fMatcher.end(1)+1;
int end = fMatcher.start(3);
feedrate = (int) Float.parseFloat(input.substring(start, end));
lastFeedrate = feedrate;
}else{
feedrate = lastFeedrate;
}
String posString;
String movementString = "";

36

//System.out.println("X: " + xPos);
posString = "P[" + pointCount +"]{ \n GP1:\n UF:8, UT:F,\n CONFIG: 'N U T, , 0, 0',\n " + " X =
"+Float.toString(xPos) + "mm," + " Y = "+Float.toString(yPos) + "mm," + " Z =
"+Float.toString(zPos) + "mm," + " W = 180.000 deg, P = 0.000 deg, R = 0.000 deg \n };";
if(extruderVal == 0){
if(extruderOn) {
movementString = lineNumber + ": DO[101]=OFF;\n";
extruderOn = false;
lineNumber++;
}
}else{
if(!extruderOn){
movementString = lineNumber + ": DO[101]=ON;\n";
extruderOn = true;
lineNumber++;
}
}
movementString = movementString + lineNumber + ": L P[" + pointCount +"] " +
Integer.toString(feedrate) + "mm/sec FINE;";
pointCount++;
lineNumber++;
movements = movements.concat(movementString + "\n");
positions = positions.concat(posString + "\n");
double distance = Math.sqrt(Math.pow((xPos-lastTestX), 2)+Math.pow((yPos-lastTestY),2));
double ratio = distance/(double) extruderVal;
double dist = xPos-lastTestX;
//System.out.println("Ratio: " + ratio + " " + inRange + "/" + iterations);
if (ratio > 35 && ratio < 37){
inRange++;
}
iterations++;
lastTestX = lastXPos;
lastTestY = lastYPos;
}
/**
* Arc parser.
* @param input
* @param clockwise
*/
public void arcParser(String input, boolean clockwise){
float xPos = 0;
float yPos = 0;
float iPos = 0;
float jPos = 0;

37

float extruderVal = 0;
int feedrate = 0;
Matcher xMatcher = xPattern.matcher(input);
Matcher yMatcher = yPattern.matcher(input);
Matcher zMatcher = zPattern.matcher(input);
Matcher iMatcher = iPattern.matcher(input);
Matcher jMatcher = jPattern.matcher(input);
Matcher eMatcher = ePattern.matcher(input);
Matcher fMatcher = fPattern.matcher(input);
if(xMatcher.matches()){
int start = xMatcher.end(1)+1;
int end = xMatcher.start(4);
xPos = Float.parseFloat(input.substring(start, end));
}else{
xPos = lastXPos;
}
if(yMatcher.matches()){
int start = yMatcher.end(1)+1;
int end = yMatcher.start(4);
yPos = Float.parseFloat(input.substring(start, end));
}else{
yPos = lastYPos;
}
if(iMatcher.matches()){
int start = iMatcher.end(1)+1;
int end = iMatcher.start(4);
iPos = Float.parseFloat(input.substring(start, end));
}
if(jMatcher.matches()){
int start = jMatcher.end(1)+1;
int end = jMatcher.start(4);
jPos = Float.parseFloat(input.substring(start, end));
}
if(eMatcher.matches()){
int start = eMatcher.end(1)+1;
int end = eMatcher.start(3);
extruderVal = Float.parseFloat(input.substring(start, end));
lastExtruderValue = extruderVal;
}else{
extruderVal = 0;
}
if(fMatcher.matches()){
int start = fMatcher.end(1)+1;
int end = fMatcher.start(3);

38

feedrate = (int) Float.parseFloat(input.substring(start, end));
lastFeedrate = feedrate;
}else{
feedrate = lastFeedrate;
}
String posString;
String movementString = "";
float thruXPos = 0;
float thruYPos = 0;
Point radiusPoint = new Point(iPos, jPos);
Point startPoint = new Point(lastXPos, lastYPos);
Point endPoint = new Point(xPos, yPos);
float radius = distance(lastXPos, lastYPos, iPos, jPos);
float startTheta = radiusPoint.getAngle(startPoint);
float endTheta = radiusPoint.getAngle(endPoint);
System.out.println("Radius: " + radius);
System.out.println("Start point: " + startPoint.x + ", " + startPoint.y + "End point: " + endPoint.x
+ ", " + endPoint.y);
System.out.println("Start theta: " + startTheta + "End theta: " + endTheta);
float newTheta = 0;
if(clockwise) {
if (endTheta < startTheta) {
//Does not reset theta
newTheta = startTheta - ((startTheta - endTheta) / 2);
} else {
//Does reset theta
newTheta = (startTheta + 360) - (((startTheta + 360) - endTheta) / 2);
}
}else{
if (endTheta < startTheta) {
//Does not reset theta
newTheta = endTheta - ((startTheta - endTheta) / 2);
} else {
//Does reset theta
newTheta = (endTheta + 360) - (((startTheta + 360) - endTheta) / 2);
}
}
thruXPos = radius*(float)Math.cos((Math.toRadians(newTheta)));
thruYPos = radius*(float)Math.sin(Math.toRadians(newTheta));
//System.out.println("x: " + xPos + " y: " + yPos + " i: " + iPos + " j: " + jPos);
//System.out.println("X: " + thruXPos + " Y: " + thruYPos + " Radius: " + radius + " New Theta: " +
newTheta);
assert distance(xPos, yPos, iPos, jPos) == distance(lastXPos, lastYPos, iPos, jPos);
int pointCount1 = pointCount + 1;

39

posString = "P[" + pointCount +"]{ \n GP1:\n UF:8, UT:F,\n CONFIG: 'N U T, , 0, 0',\n " + " X = "+
String.format("%.4f", thruXPos) + "mm," + " Y = "+ String.format("%.4f", thruYPos) + "mm," + " Z
= "+Float.toString(lastZPos) + "mm," + " W = 180.000 deg, P = 0.000 deg, R = 0.000 deg \n };\n"
+ "P[" + (pointCount1) +"]{ \n GP1:\n UF:8, UT:F,\n CONFIG: 'N U T, , 0, 0',\n " + " X =
"+Float.toString(xPos) + "mm," + " Y = "+Float.toString(yPos) + "mm," + " Z =
"+Float.toString(lastZPos) + "mm," + " W = 180.000 deg, P = 0.000 deg, R = 0.000 deg \n };";
if(extruderVal == 0){
if(extruderOn) {
movementString = lineNumber + ": DO[101]=OFF;\n";
extruderOn = false;
lineNumber++;
}
}else{
if(!extruderOn){
movementString = lineNumber + ": DO[101]=ON;\n";
extruderOn = true;
lineNumber++;
}
}
movementString = movementString + lineNumber + ": C P[" + pointCount +"] \n" +
"P["+ pointCount1 +"]" + Integer.toString(feedrate) + "mm/sec FINE;\n";
pointCount += 2;
lineNumber++;
movements = movements.concat(movementString);
positions = positions.concat(posString);
lastXPos = xPos;
lastYPos = yPos;
double distance = Math.sqrt(Math.pow((xPos-lastTestX), 2)+Math.pow((yPos-lastTestY),2));
double ratio = distance/(double) extruderVal;
double dist = xPos-lastTestX;
//System.out.println("Ratio: " + ratio + " " + inRange + "/" + iterations);
}
/**
* Returns the distance between the points (x,y) and (i,j)
* @param x
* @param y
* @param i
* @param j
* @return
*/
public float distance(float x, float y, float i, float j){
double result = Math.sqrt((Math.pow(i-x, 2) + Math.pow(j-y, 2)));
return (float) result;
}

40

/**
* Returns true if the input begins with "G1".
* @param input
* @return
*/
public boolean matchesString(String input){
String pattern = "G1(.*)";
Pattern p = Pattern.compile(pattern);
Matcher m = p.matcher(input);
return m.matches();
}
}

File Splitter Program

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Objects;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
/**
* Created by Will on 12/10/15.
*/
public class FileSplitter {
String programName;
Object[] movements;
Object[] positions;
ArrayList<ArrayList<Object>> movementBlocks;
ArrayList<ArrayList<Object>> posistionBlocks;
FileSplitter(String programName, Object[] movements, Object[] positions) {
this.programName = programName;
this.movements = movements;
this.positions = positions;
}
public void split() {
ArrayList<String> endPos = new ArrayList<String>();
movementBlocks = new ArrayList<ArrayList<Object>>();
int num = -1;
for (int i = 0; i < movements.length; i++) {
if (i % 500 == 0) {
Pattern pointPattern = Pattern.compile("(.*)(P\\[(\\d+)\\])(.*)");

41

Matcher pointMatcher = pointPattern.matcher((String) movements[i]);
if (pointMatcher.matches() && i != 0) {
endPos.add(pointMatcher.group(3));
}
movementBlocks.add(new ArrayList<Object>());
num++;
}
movementBlocks.get(num).add(movements[i]);
}
//Add newline characters to the end of the movement strings.
String[] movementString = new String[movementBlocks.size()];
for (int i = 0; i < movementBlocks.size(); i++) {
movementString[i] = new String("");
for (int j = 0; j < movementBlocks.get(i).size(); j++) {
movementString[i] =
movementString[i].concat(movementBlocks.get(i).get(j) + "\n");
//System.out.println(movementString[i].toString());
}
}
num = 0;
for (int i = 0; i < movementString.length; i++) {
PrintWriter writer = null;
try {
//Write the position data to file.
writer = new PrintWriter(new FileOutputStream(new File(programName +
num + ".ls"), true));
writer.print("/PROG " + programName + num +
"\n/ATTR\n" +
"/MN\n");
num++;
//System.out.print("Printing: " + movementString[i]);
//writer.print(movementString[0]);
writer.write(movementString[i]);
} catch (FileNotFoundException e) {
e.printStackTrace();
}
writer.close();
}
String newString = "";
for (int i = 0; i < positions.length; i++) {
newString = newString + ((String) positions[i]);
}
positions = newString.split(";");
posistionBlocks = new ArrayList<ArrayList<Object>>();

42

int posNum = 0;
posistionBlocks.add(new ArrayList<Object>());
for (int i = 0; i < positions.length; i++) {
if (endPos.size() <= posNum) {
posistionBlocks.get(posNum).add(positions[i] + ";");
} else {
if (i == (Integer.parseInt(endPos.get(posNum)))-2) {
posistionBlocks.add(new ArrayList<Object>());
System.out.println("End Pos: " +
(Integer.parseInt(endPos.get(posNum))-2));
posNum++;
}
posistionBlocks.get(posNum).add(positions[i] + ";");
}
}
System.out.print("Block Length: " + posistionBlocks.size());
String[] positionString = new String[posistionBlocks.size()];
//System.out.println("\nThis is here: " + movementBlocks.get(0).get(7).toString());
for (int i = 0; i < posistionBlocks.size(); i++) {
positionString[i] = new String("");
for (int j = 0; j < posistionBlocks.get(i).size(); j++) {
positionString[i] =
positionString[i].concat(posistionBlocks.get(i).get(j) + "\n");
//System.out.println(movementString[i].toString());
}
}
num = 0;
System.out.println("Length: " + positions.length);
//System.out.print("First pos: " + positions[1].toString());
for (int i = 0; i < positionString.length; i++) {
PrintWriter writer = null;
try {
//Write the position data to file.
writer = new PrintWriter(new FileOutputStream(new File(programName +
num + ".ls"), true));
num++;
//System.out.print("Printing: " + movementString[i]);
//writer.print(movementString[0]);
writer.print("/POS\n");
writer.write(positionString[i]);
writer.write("/END.");
} catch (FileNotFoundException e) {
e.printStackTrace();
}

43

writer.close();
/*for (int k = 0; k < endPos.size(); k++){
System.out.println("End pos: " + endPos.get(k));
}*/
}
}
public static int getLineCount(String text) {
return text.split("[\n|\r]").length;
}
}

Point Program

/**
* Created by Will on 11/10/15.
*/
public class Point {
float x;
float y;
Point(float x, float y){
this.x = x;
this.y = y;
}
/**
* Returns degrees.
* @param target
* @return
*/
public float getAngle(Point target) {
float angle = (float) Math.toDegrees(Math.atan2(target.y - y, target.x - x));
if(angle < 0){
angle += 360;
}
return angle;
}
}

